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Relativistic Lamé functions revisited

S N M Ruijsenaars

Centre for Mathematics and Computer Science, PO Box 94079, 1090 GB Amsterdam,
The Netherlands

Received 1 May 2001
Published 23 November 2001
Online at stacks.iop.org/JPhysA/34/10595

Abstract
A basis for the eigenfunctions of the relativistic elliptic two-particle Calogero–
Moser Hamiltonian is known for a dense set in the natural parameter space.
We study the question whether an interpolating basis exists, employing an
asymptotic power series ansatz. For the hyperbolic specialization we determine
all of the coefficients explicitly, which gives rise to formal interpolating
eigenfunctions. For the elliptic case we also need a power series ansatz
for the eigenvalues. We obtain the first few coefficients explicitly, thus
obtaining evidence for the existence of interpolating formal eigenfunctions and
eigenvalues.

PACS numbers: 02.30.Gp, 02.30.Lt

1. Introduction

The results presented in this paper primarily concern ordinary linear second-order analytic
difference equations with special coefficient functions, and solutions with certain symmetry
properties. Specifically, we deal with explicitly given elliptic coefficients, and (in greater
detail) with their hyperbolic specialization, obtaining some results going beyond those in our
previous papers [1, 2].

At present, there is a conspicuous lack of knowledge concerning the general theory for
this type of equation. Explicitly worked-out special cases may yield guidance into this largely
uncharted territory. In particular, they give rise to natural questions concerning more general
classes of equations. On the one hand, for any question that has already been answered
explicitly for the special cases, one can ask whether similar answers hold true in a more
general setting. But on the other hand, an approach that does not involve detailed special
function knowledge may yield existence results that would be crucial to the study of open
questions in the more specialized context.

With an eye on this eventual interplay between the special and the general, we try and
introduce the kind of issues we address in our special case via a stepwise narrowing of focus,
mentioning pertinent questions (and a few answers) at the point where they first arise. (See
also section 2 of our recent lecture notes [3] for a related account.)
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We start from an analytic difference equation (henceforth A�E) of the form

F(z − ia) + C(z)F (z + ia) = EF(z) a ∈ (0,∞) E ∈ C. (1.1)

Here, the coefficient C(z) is assumed to belong to the function field

M ≡ {f (z) | f meromorphic on C}. (1.2)

Moreover, we focus attention on solutions F ∈ M to (1.1). Obviously, in case C(z) vanishes
identically, the general solution to (1.1) (with E ∈ C∗) is given by exp(i ln(E)z/a)µ(z), where
µ(z) belongs to the field of ia-periodic meromorphic functions

Pia ≡ {µ ∈ M | µ(z + ia) = µ(z)}. (1.3)

Assuming from now on

C(z) ∈ M∗ (1.4)

let F1, F2 ∈ M∗ be two solutions. Then their Casorati determinant

D(F1, F2; z) ≡ F1(z + ia/2)F2(z − ia/2) − F1(z − ia/2)F2(z + ia/2) (1.5)

vanishes identically iff F1/F2 ∈ Pia . Assuming F1/F2 /∈ Pia , one easily checks that (1.5)
solves the first-order A�E

D(z + ia/2)

D(z − ia/2)
= 1

C(z)
. (1.6)

Now suppose F3(z) solves (1.1), too. Then we have

µj(z) ≡ D(Fj , F3; z + ia/2)/D(F1, F2; z + ia/2) ∈ Pia j = 1, 2. (1.7)

(By (1.6), quotients of Casorati determinants are ia-periodic.) It is straightforward to verify
the identity

F3(z) = µ1(z)F2(z) − µ2(z)F1(z). (1.8)

Obviously, all functions of this form with µ1, µ2 ∈ Pia solve (1.1), so the solution space may
be viewed as a two-dimensional vector space over the field Pia of ia-periodic meromorphic
functions.

Next, taking existence of a solution basis as just considered for granted, consider two
A�Es of the above type,

F(z − ia−δ) + Cδ(z)F (z + ia−δ) = EδF(z) aδ ∈ (0,∞) Eδ ∈ C δ = +,−. (1.9)

A joint solution to these equations can be viewed as a joint eigenfunction of the two analytic
difference operators Aδ : M → M given by

Aδ ≡ Tia−δ
+ Cδ(z)T−ia−δ

δ = +,− (1.10)

with

(TαF )(z) ≡ F(z − α) α ∈ C∗. (1.11)

It is, therefore, also a zero-eigenvalue eigenfunction of the commutator [A+,A−].
Let us now assume that two joint solutions exist whose Casorati determinants w.r.t. a+ and

a− belong to M∗. For rational a+/a−, one still obtains an infinite-dimensional solution space,
since one can allow multipliers from Pia whenever a+ and a− are multiples of a. But since
one has

Pia+ ∩ Pia− = C a+/a− /∈ Q (1.12)

one would expect that the joint solution space is two dimensional for irrational a+/a−.
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Of course, one should first of all prove that two solutions with the above properties exist—
which is far from clear. Assuming only existence of two joint solutionsF+, F− ∈ M∗ for a+/a−
irrational, however, there is a simple extra condition entailing that the solution space is two
dimensional with basis {F+, F−}: one need only assume

lim
Im z→∞

F+(z)/F−(z) = 0 (1.13)

for all Re z in some interval I = [a, b].
The sufficiency of this condition can be seen as follows. (Our reasoning is adapted from the

proof of theorem B.1 in [1], which deals with the special elliptic case that will be reconsidered
below.) Denoting F+/F− by Q, it follows from (1.13) that Q(z) is neither ia+-periodic nor
ia−-periodic. Thus the Casorati determinants of F+ and F− w.r.t. ia+ and ia− do not vanish
identically. Now let F be another solution to the joint eigenvalue equation. Then we have

F(z) = λ+,δ(z)F+(z) + λ−,δ(z)F−(z) δ = +,− (1.14)

with λτδ ∈ Piaδ
, τ, δ = +,−. From this we deduce

λ−+(z) − λ−−(z) = [λ+−(z) − λ++(z)]Q(z). (1.15)

Now the functions λτδ(z) are analytic on the lines Re z = ρ ∈ [a, b], save for finitely
many ρ. (This follows from meromorphicity and periodicity.) Fixing ρ0 ∈ [a, b] such that the
functions λτδ are analytic on Re z = ρ0, it follows from periodicity that they are bounded as
well. From (1.15) we then get

lim
k→∞

λ−+(ρ0 + ika−) = λ−−(ρ0) k ∈ N. (1.16)

Finally, we use λ−+ ∈ Pia+ and our assumption a+/a− /∈ Q to deduce that λ−+(z) equals
λ−−(ρ0) for Re z = ρ0, hence for all z. Thus we obtain λτδ(z) = cτ , τ, δ = +,−, so that F is
a linear combination of F+ and F−, as advertised.

Let us next specialize to a situation in which A+ and A− obviously commute, namely,

Cδ(z) ∈ P∗
iaδ

δ = +,−. (1.17)

In this setting the question concerning joint eigenfunctions is especially natural. Even so, it
appears to be wide open.

Assuming existence of a joint solution F ∈ M∗, however, one arrives at three distinct
solutions F(z), F (z ± ia+) to the A�E A+F = E+F (since C+(z) is ia+-periodic). Therefore
one can write F(z − ia+) as a linear combination of F(z + ia+) and F(z) with ia−-periodic
coefficients, in accordance with the second A�E A−F = E−F obeyed by F . The latter A�E,
then, may be viewed as a constraint of monodromy type.

Specializing further, let us view a+, a− as parameters varying over (0,∞), on which C+(z)

and E+ depend in a real-analytic way. Then we may define C−(z) and E− by requiring that
they be equal to C+(z) and E+ with a+ and a− interchanged, respectively. In this restricted
context, it is natural to search for solutions to A+F = E+F that also depend real-analytically
on a+, a−, and that are invariant under the interchange of a+ and a−. Indeed, this entails they
also solve A−F = E−F .

In our concrete settings there are a few more ingredients playing a role. First, we are
dealing with a coefficient C+(z) that depends on an extra parameter b in an entire fashion;
since C−(z) is obtained by interchanging a+ and a−, it has the same type of dependence.
Second, specializing to the state of affairs in the hyperbolic case, the eigenvalue pair (E+, E−)

depends on a number in the (open) right half plane, in the sense that only for this one-parameter
family and special b-values do we have a joint solution basis with all of the aforementioned
features available. Specifically, this is the case for b of the form ka+ + la−, k, l ∈ Z. (In the
elliptic case there are some further restrictions, cf [1].)
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Fixing a+, a− with a+/a− irrational, the numbers b = ka+ +la− are clearly dense in R. The
natural question that arises is, therefore, whether the two basis functions for the joint solution
space admit an interpolation to arbitrary real b. Once again, this is a question that can be
asked in the more general settings delineated above. However, our new results make plausible
that such an interpolation may only be possible at the expense of allowing non-meromorphic
solutions. Indeed, they suggest (but do not quite prove) that in our case interpolating basis
functions have a natural boundary on the imaginary z-axis.

Let us now detail the hyperbolic coefficient functions we are concerned with in section 2.
They are given by

Cδ(z) ≡ sinh(π(z + ib)/aδ) sinh(π(z − ib + ia−δ)/aδ)

sinh(πz/aδ) sinh(π(z + ia−δ)/aδ)
δ = +,−. (1.18)

The A�Os Aδ (1.10) are then related to the A�Os

Aδ ≡ sinh(π(z − ib)/aδ)

sinh(πz/aδ)
Tia−δ

+ (i → −i) δ = +,− (1.19)

employed in [2] by a similarity transformation involving the ‘generalized Harish–Chandra
function’

c(a+, a−, b; z) ≡ G(a+, a−; z − ib + i(a+ + a−)/2)

G(a+, a−; z + i(a+ + a−)/2)
. (1.20)

(Here, G(a+a−; z) is the hyperbolic gamma function from [4], also known as the double sine
function.) Specifically, one has

Aδ = c(z)−1Aδc(z) δ = +,− (1.21)

on account of the A�Es satisfied by the G-function.
Starting from Aδ-eigenfunctions �(±z, y) with eigenvalues

Eδ(y) = 2 cosh(a−δy) δ = +,− (1.22)

and asymptotics

�(±z, y) ∼ c(±z) exp(±izy) y → ∞ (1.23)

we therefore obtain Aδ-eigenfunctions

F±(z, y) ≡ c(z)−1�(±z, y)f (y) (1.24)

with eigenvalues Eδ(y). The function f (y) is at our disposal. It will be chosen such that the
eigenfunctions F±(z, y) have a certain symmetry property (‘self-duality’). Moreover, it has
asymptotics

f (y) ∼ 1 y → ∞ (1.25)

so that

F+(z, y) ∼ exp(izy) y → ∞. (1.26)

The elliptic coefficient functions at issue in section 3 are given by

Cδ(z) ≡ exp(−2br)
sδ(z + ib)sδ(z − ib + ia−δ)

sδ(z)sδ(z + ia−δ)
δ = +,−. (1.27)

Here we have

sδ(z) ≡ s(r, aδ; z) δ = +,− (1.28)

and s(r, a; z) is defined in terms of the Weierstrass σ -function σ(z;ω,ω′) by

s(r, a; z) ≡ σ

(
z; π

2r
,

ia

2

)
exp(−ηz2r/π). (1.29)
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Thus Cδ(z) is an elliptic function with periods π/r, iaδ .
The elliptic A�Os Aδ are related to the A�Os

Aδ ≡ exp(−br)
sδ(z − ib)

sδ(z)
Tia−δ

+ (i → −i) δ = +,− (1.30)

employed in [1] by the similarity transformation (1.21), with c(z) now given by

c(r, a+, a−, b; z) ≡ G(r, a+, a−; z − ib + i(a+ + a−)/2)

G(r, a+, a−; z + i(a+ + a−)/2)
. (1.31)

Here, G(r, a+a−; z) is the elliptic gamma function introduced in [4].
At the elliptic level, too, there exist, for suitable parameters a+, a−, b, joint eigenfunctions

�(±z, y) of the A�Os Aδ with eigenvalues Eδ(y) satisfying

Eδ(y) ∼ exp(a−δy) y → ∞ δ = +,− (1.32)

and asymptotics (1.23) (cf equations (1.22)–(1.26) in [1]). Thus they give rise to Aδ-
eigenfunctions F±(z, y) (1.24) with asymptotics (1.26) whenever f (y) satisfies (1.25).

Let us now sketch the contents of section 2, which deals with the hyperbolic case. In
section 2.1 we introduce and explore a power series ansatz for a solution to the A�Es
AδF = 2 cosh(a−δy)F with asymptotics exp(izy) for y → ∞. This yields a system of
A�Es coupling the coefficients. The requirement that the coefficients vanish for z → ∞
gives rise to a special type of solution that is unique when it exists.

In section 2.2 we exploit results from our paper [2] to prove that this special type of solution
does exist for a+/a− irrational and b of the form (N++1)a+−N−a−, N+, N− ∈ N. In section 2.3
we obtain the coefficients explicitly. We show they admit a real-analytic extension to real b by
using the q-binomial theorem. In this way we obtain formal interpolating Aδ-eigenfunctions.
Though we discuss them in some detail, we leave various questions open.

The elliptic case is studied in section 3, following the pattern laid out for the hyperbolic
case. Here, however, we cannot go very far. Indeed, our results are only some small steps
towards a complete resolution of the interpolation issue. But just as in the hyperbolic case,
they do supply some new ideas for further studies.

To conclude this introduction, let us add that our hyperbolic results can be exploited to
obtain arbitrary-b (non-formal) trigonometric eigenfunctions. (In section 4 of [2] we only
handled a discrete set of b-values.) To keep this paper within bounds, we will return to the
trigonometric case elsewhere.

2. The hyperbolic regime

2.1. A power series ansatz

Consider the eigenvalue equations

(A−δF )(z, y) = 2 cosh(aδy)F (z, y) aδ ∈ (0,∞) δ = +,− (2.1)

with A−δ given by (1.10) and (1.18). Since the coefficients Cδ(z) (1.18) tend to 1 exponentially
as Re z → ∞, one may expect that solutions F+(z, y) exist with plane wave asymptotics
exp(izy) as Re z → ∞. But in fact we are going to impose the ‘dual’ requirement

F+(z, y) ∼ exp(izy) Re y → ∞. (2.2)

More generally, requiring

a+/a− /∈ Q (2.3)
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until further notice, we are going to study the power series ansatz

F+(z, y) = eizy
∞∑

k,l=0

ckl(z) exp(−2ka+y) exp(−2la−y) c00(z) ≡ 1. (2.4)

(Note that (2.3) is necessary for all monomials to be distinct.)
To be sure, this ansatz may appear unmotivated at this point. Its relevance is, however,

suggested by our previous results in [2]. We begin by studying it so as to make clear how the
eigenfunctions from [2] fit in this general framework, unencumbered by the detailed formulae
presented later on. Furthermore, proceeding in this reverse order will be advantageous in our
study of the elliptic case in section 3.

Plugging (2.4) into (2.1), we obtain
∞∑

k,l=0

e−2(ka++la−)y[ckl(z − iaδ) + C−δ(z)e
−2aδyckl(z + iaδ)]

= (1 + e−2aδy)

∞∑
k,l=0

ckl(z)e
−2(ka++la−)y δ = +,−. (2.5)

Comparing coefficients, we get for δ = +

cmn(z − ia+) − cmn(z) = −C−(z)cm−1,n(z + ia+) + cm−1,n(z) m, n ∈ N (2.6)

and for δ = −
cmn(z − ia−) − cmn(z) = −C+(z)cm,n−1(z + ia−) + cm,n−1(z) m, n ∈ N. (2.7)

Here, we have boundary conditions

c00 ≡ 1 c−1,l ≡ 0 l ∈ N ck,−1 ≡ 0 k ∈ N. (2.8)

We proceed by analysing the system (2.6)–(2.8) of coupled linear A�Es. First, let us
note that the eigenvalue equations (2.1) do not fix the dependence on the spectral variable
y. Therefore, whenever a solution exists, it is highly non-unique. In particular, we can
multiply (2.4) by an arbitrary formal power series of the form

p(y) ≡
∞∑

m,n=0

αmn exp(−2(ma+ + na−)y) α00 = 1 (2.9)

to obtain another formal solution with coefficients

c
(p)

kl (z) =
k∑

i=0

l∑
j=0

cij (z)αk−i,l−j . (2.10)

Then the coefficients c
(p)
mn(z) yield a solution to the system (2.6)–(2.8), too.

To discard this ambiguity, it is clearly sufficient to require

ckl(z) → 0 Re z → ∞ ∀(k, l) ∈ N2 \ {(0, 0)}. (2.11)

Of course, at this stage it is far from clear that a solution with this asymptotics exists. Even
so, let us assume that a solution to the m = 0 subsystem satisfying (2.11) exists. To be quite
precise, we assume that for arbitrary positive a+, a− satisfying (2.3) and real b there exist
functions αn(a+, a−, b; z), n ∈ N∗, such that

αn(z) ∈ Pia+ ∀n ∈ N∗ (2.12)

αn(z − ia−) − αn(z) = −C+(z)αn−1(z + ia−) + αn−1(z) ∀n ∈ N∗ α0(z) ≡ 1 (2.13)

αn(z) → 0 Re z → ∞ ∀n ∈ N∗. (2.14)
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This existence assumption will be shown to be non-vacuous later on. (Indeed, we will
exhibit the αn explicitly.) But for now we only derive some illuminating consequences. First,
we claim our assumption entails that the system (2.6)–(2.8) admits a unique solution with
asymptotics (2.11).

We prove this claim in several steps. To begin with, we show that the above functions αn

are uniquely determined by (2.12)–(2.14). Indeed, taking first n = 1, the difference of two
such functions is ia+-periodic and ia−-periodic, and it vanishes for Re z → ∞. But then it
vanishes identically, cf (1.12). Proceeding inductively, this yields the desired uniqueness.

Next, we assert that the coefficients

cmn(a+, a−, b; z) ≡ αm(a−, a+, b; z)αn(a+, a−, b; z) m, n ∈ N (2.15)

solve the system (2.6)–(2.8) and have asymptotics (2.11). The last assertion is immediate
from (2.14). To prove the solution property, we recall that (2.12), (2.13) amount to c0n solving
the m = 0 subsystem. Since C−(z) is obtained from C+(z) by interchanging a+ and a−, the
coefficients cm0 satisfy the n = 0 subsystem. Using now iaδ-periodicity, the solution property
for the general system easily follows.

Finally, to prove the uniqueness of this solution, we need only invoke the argument showing
uniqueness of the functions αn. Indeed, the same reasoning shows that the solution cm0 to
the n = 0 subsystem with the prescribed asymptotics is unique. Then we successively get
uniqueness of c11, c12, c13, . . . , c21, c22, . . . etc. Hence our claim is proved.

We continue with a few more consequences of our existence assumption. First, it entails
the symmetry property

αn(a+, a−, b; z) = αn(a+, a−, a+ + a− − b; z) n ∈ N. (2.16)

To see this, note that the function C+(z) (1.18) is invariant under b → a+ + a− − b.
Therefore, (2.16) follows from uniqueness of the functions αn with the properties (2.12)–
(2.14).

Combining (2.16) and (2.15), we now obtain

ckl(a+, a−, b; z) = clk(a−, a+, b; z) (2.17)

ckl(a+, a−, b; z) = ckl(a+, a−, a+ + a− − b; z). (2.18)

Thus the corresponding formal solution

F+(a+, a−, b; z, y) ≡ exp(izy)
∞∑

k,l=0

ckl(a+, a−, b; z) exp(−2(ka+ + la−)y) (2.19)

to the eigenvalue equations (2.1) satisfies

F+(a+, a−, b; z, y) = F+(a−, a+, b; z, y) (2.20)

F+(a+, a−, b; z, y) = F+(a+, a−, a+ + a− − b; z, y). (2.21)

It is not a simple matter to find the unique functions αn obeying (2.12)–(2.14) directly.
Here we only determine α1 (which is easy), and then exploit results from [2] to obtain all of
the αn.

Thus, consider the n = 1 A�E (2.13),

α1(z − ia−) − α1(z) = −C+(z) + 1. (2.22)

Using (1.18), this can be rewritten as

α1(z − ia−) − α1(z) = γ (a+, a−, b)[coth(πz/a+) − coth(π(z + ia−)/a+)] (2.23)

γ (a+, a−, b) ≡ sinh(iπ(b − a−)/a+) sinh(iπb/a+)/ sinh(iπa−/a+). (2.24)
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Hence we immediately obtain the solution

α1(a+, a−, b; z) = γ (a+, a−, b)[coth(π(z + ia−)/a+) − 1]. (2.25)

Note that it is indeed invariant under b → a+ + a− − b, and that it is ill defined for a+ = a−.
To solve the n = 2 equations directly is not a routine matter. (Moreover, we should repeat

at this point that existence of a solution is not clear, a priori.) Thus we now turn to the pertinent
results from our paper [2], which will lead to the desired solutions αn(a+, a−, b; z), n ∈ N.
(They are given by (2.59) below.)

2.2. Eigenfunctions for a dense set of b-values

In section 3 of [2] we obtained joint Aδ-eigenfunctions M(a+, a−, b; ±z, p) with eigenvalues
2 cosh(πp/aδ), δ = +,−, for all a+, a− ∈ (0,∞) and b of the form k+a+ + k−a−, k+, k− ∈ Z.
(For other eigenvalue pairs we have no information concerning joint Aδ-eigenfunctions.) More
specifically, the hyperbolic specialization of the elliptic Aδ-eigenfunction �(z, y) from [1]
(already mentioned in the introduction) is related to M(z, p) via

�(z, πp/a+a−) = M(z, p)w(p)1/2 (2.26)

where w(p) is the hyperbolic weight function from [4].
In this connection we recall that the dependence of the joint eigenfunctions on the spectral

variable is a matter of convention. As it turns out, in the hyperbolic case this dependence
can be chosen in such a way that one obtains joint eigenfunctions that are invariant under
interchanging z and p. Indeed, the functions M(±z, p) have this striking ‘self-duality’
property, cf equations (3.71), (3.72) in [2].

We proceed by defining Aδ-eigenfunctions

F±(z, y) ≡ eiφM(±z, p)/c(z)c(p) p = a+a−y/π (2.27)

where

φ ≡ π

2
[(1 − b/a+)(1 − b/a−) − 1]. (2.28)

When one views these functions as functions of z and p, they are by construction self-dual as
well. But in the context of this paper it is expedient to employ the same spectral variable y for
the two regimes at issue. Clearly, one has

F−(z, y) = −u(−z)F+(−z, y) (2.29)

where

u(z) ≡ −c(z)/c(−z) (2.30)

is the u-function (‘S-matrix’) from [4].
The phase (2.28) is chosen such that one gets asymptotics

F+(z, y) ∼ exp(izy) Re y → ∞ (2.31)

F−(z, y) ∼ −u(−z) exp(−izy) Re y → ∞. (2.32)

The two functions F±(z, y) are related by ia+- or ia−-periodic multipliers for a discrete set
on the imaginary y-axis. Restricting attention to Re y > 0 from now on, the condition (1.13)
holds true for Re z > 0, however. For irrational a+/a−, the functions F±(z, y) therefore span
the two-dimensional space of (meromorphic) functions F satisfying the A�Es

F(z − iaδ) +
sinh(π(z + ikδaδ)/a−δ) sinh(π(z − i(kδ − 1)aδ)/a−δ)

sinh(πz/a−δ) sinh(π(z + iaδ)/a−δ)
F (z + iaδ)

= 2 cosh(aδy)F (z) kδ ∈ Z δ = +,−. (2.33)
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Since our main interest in this paper concerns interpolation with (2.3) in effect, we may
as well restrict attention to b of the form

b = (N+ + 1)a+ − N−a− N+, N− ∈ N. (2.34)

(Indeed, these b-values are already dense in R.) The pertinent c-function can be calculated
from the A�Es satisfied by the hyperbolic gamma function, yielding

c(z) = (−i)2N+N−+N++N−+1
N−∏
k=1

2 sinh(π(z + ika−)/a+)

/ N+∏
j=0

2 sinh(π(z − ija+)/a−). (2.35)

From equation (3.65) in [2] we then obtain

F+(z, y) =
∏

δ=+,−
q

Nδ(Nδ+1)/2
δ

Nδ∏
j=1

[4 sinh(π(z + ijaδ)/a−δ) sinh(π(p + ijaδ)/a−δ)]
−1

×
∏

δ=+,−
exp(πNδ(z + p)/a−δ)SNδ

(qδ; exp(−2πz/a−δ), exp(−2πp/a−δ))

× exp(izy) p = a+a−y/π. (2.36)

Here, q+ and q− are the phases

q+ ≡ exp(iπa+/a−) q− ≡ exp(iπa−/a+) (2.37)

and SN(q; r, s) is a polynomial in r and s with coefficients that are Laurent polynomials in q:

SN(q; r, s) ≡
N∑

k,l=0

c
(N)
kl (q)rksl . (2.38)

The coefficients are defined by equations (2.2)–(2.5) in [2]. (Note the typo in (2.2): the second
dot sequence should be omitted.) For our purposes, it is enough to use two formulae that easily
follow from their definition in [2], namely,

SN(q; r, 0) = qN(N+1)/2
N∏

j=1

(1 − q−2j r) (2.39)

and

SN(q; r, s)
SN(q; r, 0)

=
N∑
l=0

d
(N)
l (q; r)sl (2.40)

d
(N)
l (q; r) = (−)l

∑
1�i1<···<il�N

q−2(i1+···+il )
l∏

j=1

1 − q−2j+2(N+1)r

1 − q−2j r
. (2.41)

Using (2.39), (2.40) and the notation

rδ ≡ exp(−2πz/a−δ) sδ ≡ exp(−2aδy) δ = +,− (2.42)

we can rewrite (2.36) as

F+(z, y)

exp(izy)
=

∏
δ=+,−

q
−Nδ(Nδ+1)/2
δ SNδ

(qδ; rδ, sδ)
Nδ∏
j=1

1

(1 − q
−2j
δ rδ)(1 − q

−2j
δ sδ)

=
∏

δ=+,−

( Nδ∑
l=0

d
(Nδ)
l (qδ; rδ)sl

δ

) Nδ∏
j=1

(1 − q
−2j
δ sδ)

−1. (2.43)

From this one easily sees that the rhs can be written as a product of two power series in s+ and
s−, which converge for |sδ| < 1, δ = +,−. Moreover, the asymptotics (2.31) is clear from
d

(N)
0 = 1.
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2.3. Formal interpolating eigenfunctions

We are now prepared to return to our ansatz (2.4) for solving the eigenvalue equations (2.1). As
we have just seen, a (non-formal) solution of this form exists for arbitrary positive a+, a− and b

of the form (2.34). Requiring once more (2.3) so as to ensure independence of the monomials
sm

+ sn
−, we may now deduce that their coefficients cmn satisfy the system (2.6)–(2.8).
We continue to obtain the coefficients associated with (2.43) in explicit form. First, let us

note (2.41) entails

Nδ∏
j=1

(1 − q
−2j
δ sδ) =

Nδ∑
l=0

d
(Nδ)
l (qδ; 0)sl

δ. (2.44)

Also, (2.37) and (2.3) yield ql
δ �= 1 for δ = +,− and l ∈ Z. Now we are going to exploit the

identity

d
(Nδ)
l (qδ; 0) =

l∏
j=1

1 − q
2j−2(Nδ+1)
δ

1 − q
2j
δ

. (2.45)

Its validity can be deduced directly from the recurrence relation obeyed by the sum coefficient
in (2.41), cf equations (2.26) and (2.31) in [2]. But one can also view it as a special case of
the q-binomial theorem. (This was pointed out before in [5].)

Before recalling and using the general version of this theorem, we rewrite (2.45) using
standard q-notation [6] as

d
(Nδ)
l (qδ; 0) = (q

−2Nδ

δ ; q2
δ )l/(q

2
δ ; q2

δ )l . (2.46)

More generally, we have from (2.41)

d
(Nδ)
l (qδ; rδ) = (q

−2Nδ

δ ; q2
δ )l

(q2
δ ; q2

δ )l

(q
2Nδ

δ rδ; q−2
δ )l

(q−2
δ rδ; q−2

δ )l
. (2.47)

We now make the key observation that we can write

q2N+
+ = exp(2iπ(b − a+)/a−) q

2N−
− = exp(−2iπb/a+). (2.48)

(Recall our standing assumption (2.34).) Thus, setting

dδ
l (b, r) ≡ (eiφδ(b); q2

δ )l

(q2
δ ; q2

δ )l

(e−iφδ(b)r; q−2
δ )l

(q−2
δ r; q−2

δ )l
l ∈ N δ = +,− (2.49)

with

φ+(b) ≡ 2π(a+ + a− − b)/a− φ−(b) ≡ 2πb/a+ (2.50)

we obtain well-defined coefficients that depend on b ∈ R in a real-analytic fashion.
Furthermore, they are clearly the unique coefficients with this property that satisfy

dδ
l ((N+ + 1)a+ − N−a−, r) = d

(Nδ)
l (qδ; r) l = 0, . . . , Nδ δ = +,−. (2.51)

Consider now the power series

Pδ(b, rδ; sδ) ≡
∞∑
l=0

dδ
l (b, rδ)s

l
δ. (2.52)

For b = (N+ + 1)a+ − N−a− these series break off at l = Nδ , yielding the sums occurring on
the rhs of (2.43). For b �= k+a+ + k−a−, k± ∈ Z, however, both series are infinite and need not
have finite convergence radius (due to ‘small denominators’).
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We do not address this convergence problem here. Instead, we continue to study the
interpolation in the sense of formal power series. Using once more standard q-notation [6],
we have

Pδ(b, 0; s) = 1φ0(e
iφδ(b); −; q2

δ , s). (2.53)

Now we recall the q-binomial theorem [6]:

1φ0(α; −; q, s) ≡
∞∑
l=0

(α; q)l
(q; q)l s

l = (αs; q)∞
(s; q)∞ |s|, |q| < 1. (2.54)

(For α = q−N,N ∈ N, the series breaks off. Thus one may take q on the unit circle, entailing
the identity (2.45), as announced.) It entails

1φ0(α; −; q, s)−1 = 1φ0(α
−1; −; q, αs)

=
∞∑
l=0

(α−1; q)l
(q; q)l αlsl |s| < 1 |q| < 1. (2.55)

Therefore, we can explicitly determine the reciprocals of the formal power series Pδ(b, 0; s).
They read

1/Pδ(b, 0; s) =
∞∑
k=0

(exp(−iφδ(b)); q2
δ )k

(q2
δ ; q2

δ )k
exp(ikφδ(b))s

k. (2.56)

Putting the pieces together, we finally get the interpolating formal power series

F+(z, y)

exp(izy)
=

∏
δ=+,−

∞∑
mδ=0

cδ
mδ

(b; z) exp(−2mδaδy) (2.57)

where the coefficients are given by

cδ
n(b; z) =

n∑
l=0

(exp(iφδ(b)); q2
δ )l

(q2
δ ; q2

δ )l

(exp(−iφδ(b)) exp(−2πz/a−δ); q−2
δ )l

(q−2
δ exp(−2πz/a−δ); q−2

δ )l

× (exp(−iφδ(b)); q2
δ )n−l

(q2
δ ; q2

δ )n−l

exp(i(n − l)φδ(b)) δ = +,−. (2.58)

Now we recall our previous analysis of the power series ansatz (2.4). The uniqueness results
we proved entail in particular that the functions αn are given by

αn(a+, a−b; z) =
n∑

l=0

(exp(2π ib/a+); q2
−)l

(q2−; q2−)l

(exp(−2π(z + ib)/a+); q−2
− )l

(exp(−2π(z + ia−)/a+); q−2
− )l

× (exp(−2π ib/a+); q2
−)n−l

(q2−; q2−)n−l

exp(2π i(n − l)b/a+) (2.59)

with q− = exp(iπa−/a+). This is the explicit formula announced above.
To conclude this section, we add a number of observations related to (2.59). We begin

by noting that the only one of the three properties (2.12)–(2.14) that is obvious from (2.59)
is (2.12) (ia+-periodicity). It would be a quite unpleasant task to verify the two remaining
properties directly. Note that the asymptotics (2.14) does follow from the q-binomial theorem.
Indeed, (2.55) entails the identities

n∑
l=0

(α; q)l
(q; q)l

(α−1; q)n−l

(q; q)n−l

αn−l = 0 n > 0 |q| < 1. (2.60)

Clearly, these are still valid for all q on the unit circle that satisfy qk �= 1, k ∈ N∗, which
yields (2.14).
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Next, we note that the parameter symmetry (2.16) is not at all clear from (2.59). Even for

α1(a+, a−, b; z) = 1 − e2π ib/a+

1 − e2π ia−/a+

(
1 − e−2π(z+ib)/a+

1 − e−2π(z+ia−)/a+
− 1

)
(2.61)

some effort is needed to rewrite it as (2.25), which is manifestly invariant. Note that this
symmetry entails that for b = −N+a+ + (N− + 1)a− the formal power series Aδ-eigenfunction
F+(a+, a−, b; z, y) is equal to the (non-formal) Aδ-eigenfunction (2.36). In fact, since for b

of the form (N+ + 1)a+ − N−a− the map b �→ a+ + a− − b on the functions αm(a−, a+, b; z)
and αn(a+, a−, b; z) may be replaced by b �→ b + (2N− + 1)a−, one obtains (2.36) for
b = (N+ + 1)a+ + (N− + 1)a− and b = −N+a+ − N−a−, as well. (These equalities can
also be obtained directly from the results in section 3 of [2].)

We proceed by observing that we can use (2.29) to obtain a second independent
formal power series Aδ-eigenfunction F−(a+, a−, b; z, y). It also has the symmetry
properties (2.20), (2.21), since the u-function does. Furthermore, its interpolation properties
follow from those of F+(a+, a−, b; z, y), since u(a+, a−, b; z) admits a meromorphic
interpolation.

The c-function has the latter feature, too, cf (1.20). Therefore, the interpolation behaviour
of the function M(z, p) is also equivalent to that of F+(z, y), cf (2.27). We already made some
remarks on the interpolation problem for M(z, p) in [2]. (See also section 4.4 of our lecture
notes [7].) Here we can add that (2.59) implies that the poles of the coefficients of the formal
power series eigenfunctions are indeed dense on the imaginary z-axis whenever b is not of the
form ka+ + la−, k, l ∈ Z. (This denseness property was already discussed in [1].) This state of
affairs suggests that whenever a non-formal eigenfunction for such b-values exists, for which
the formal eigenfunction F+(z, y) is an asymptotic series, it will have the imaginary z-axis as
a natural boundary.

Let us finally consider the case of a rational quotient a−/a+ = M/N , with M and
N coprime integers. Then αn(a+, a−, b; z) is still well defined for n < N . Likewise,
αm(a−, a+, b; z) has no divergencies for m < M . But for larger n- or m-values the coefficients
are divergent, which reflects the equality of (for instance) the monomials sM

+ and sN
− , cf (2.42).

On the other hand, it may well be that the pertinent confluence limits are finite. This hunch is
suggested by its validity for the simplest case, which is the limit a+ → a− for the lowest order
monomials. Indeed, using (2.61), one easily checks that

lim
a+→a−

(α1(a+, a−, b; z)e−2a−y + α1(a−, a+, b; z)e−2a+y) (2.62)

exists.

3. The elliptic regime

3.1. A modified power series ansatz: the case m + n < 3

In the elliptic case the results from [1] already mentioned in the introduction give rise to
joint eigenvalues E±(y) that have asymptotics (1.32). But only in some special cases do these
eigenvalues equal 2 cosh(a∓y). Even so, we may attempt to follow the reasoning in section 2.1,
which starts from the latter eigenvalues, cf (2.1). That is, we may try and obtain formal joint
eigenfunctions of the form (2.4) for this pair of Aδ-eigenvalues, when A± are viewed as the
elliptic A�Os (1.10), (1.27).

Doing so, we obtain once more the system (2.6)–(2.8). In the elliptic case, however, we
should clearly drop the asymptotics assumption (2.11). Thus, (2.14) should be omitted as
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well. But as will now be shown, there does not even exist a function α1 satisfying both (2.12)
and (2.13). As a preliminary, we note that (1.29) entails the A�E

s(r, a; z + ia/2)

s(r, a; z − ia/2)
= − exp(−2irz) (3.1)

whence one has
s ′(r, a; z − ia)

s(r, a; z − ia)
− s ′(r, a; z)

s(r, a; z) = 2ir. (3.2)

In order to prove the asserted non-existence, we consider the A�E (2.22) with C+(z) given
by (1.27). The elliptic function C+(z) has two simple poles in its period rectangle, so the sum
of the two residues vanishes. Therefore one can uniquely write C+(z) as

C+(z) = A(a+, a−) + B(a+, a−)

(
s ′

+(z + ia−)

s+(z + ia−)
− s ′

+(z)

s+(z)

)
. (3.3)

Comparing residues at x = −ia− yields

B(a+, a−) = e−2br s+(ib − ia−)s+(ib)/s+(ia−). (3.4)

Taking now z = −ib, one obtains

A(a+, a−) = e−2br

s+(ia−)
[s+(ib)s

′
+(ib − ia−) − s ′

+(ib)s+(ib − ia−)]. (3.5)

Defining ρ(z) by

α1(z) = B
s ′

+(z + ia−)

s+(z + ia−)
+ ρ(z) (3.6)

the A�E (2.22) and requirement α1 ∈ Pia+ now yield

ρ(z − ia−) − ρ(z) = 1 − A (3.7)

ρ(z − ia+) − ρ(z) = B

(
s ′

+(z + ia−)

s+(z + ia−)
− s ′

+(z + ia− − ia+)

s+(z + ia− − ia+)

)
= −2irB (3.8)

where we used (3.2).
Taking the z-derivative of the two A�Es (3.7) and (3.8), we obtain ρ ′(z) = c from (1.12).

Thus we have ρ(z) = cz + d , with

−ia−c = 1 − A − ia+c = −2irB. (3.9)

Now from (3.5) and (3.4) we see that A �= 1 and B �= 0. Hence we need

1 − A = −2ira−B/a+. (3.10)

But in view of (3.4) and (3.5) this relation only holds for special b-values (in particular, for
b = 0.)

We are therefore led to an illuminating conclusion: Even at the level of formal power
series, the ansatz (2.4) is not compatible with Aδ-eigenvalues 2 cosh(a−δy), δ = +,−.

On the other hand, we may consider a power series ansatz for the eigenvalues, too.
Specifically, let us assume

Eδ(y) = exp(a−δy)

∞∑
m,n=0

eδ
mn exp(−2(ma+ + na−)y) eδ

00 = 1 δ = +,−. (3.11)

(Hence (1.32) formally follows.) As the generalization of (2.6) and (2.7) we then get

cmn(z − ia+) − cmn(z) = −C−(z)cm−1,n(z + ia+) +
m,n∑
k,l

e−
m−k,n−lckl(z) m, n ∈ N (3.12)

cmn(z − ia−) − cmn(z) = −C+(z)cm,n−1(z + ia−) +
m,n∑
k,l

e+
m−k,n−lckl(z) m, n ∈ N. (3.13)
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Here, the summation symbol signifies a sum over k ∈ {0, 1, . . . , m} and l ∈ {0, 1, . . . , n},
omitting the term (k, l) = (m, n).

Taking first m = 0, n = 1 in this recursive system of A�Es, we obtain

c01(z − ia+) − c01(z) = e−
01 (3.14)

c01(z − ia−) − c01(z) = −C+(z) + e+
01. (3.15)

Using as before (3.3)–(3.5), we write

c01(z) = B
s ′

+(z + ia−)

s+(z + ia−)
+ ρ(z) (3.16)

so that ρ(z) satisfies

ρ(z − ia−) − ρ(z) = −A + e+
01 (3.17)

ρ(z − ia+) − ρ(z) = −2irB + e−
01. (3.18)

Thus we get ρ(z) = cz + d .
At this stage we cannot rule out that c is non-zero, since we are allowing quite general

eigenvalues. But our principal interest is in coefficients cmn(z) that are π/r-periodic in z. This
is because the joint eigenfunction �(z, y) from [1] has the property that �(z, y) exp(−izy) is
π/r-periodic in z; since c(z) (1.31) is π/r-periodic, too, it follows that F+(z, y) exp(−izy) is
π/r-periodic, cf (1.24).

Accordingly, we require from now on

cmn(z) ∈ Pπ/r m, n ∈ N. (3.19)

The above then yields

c01(z) = B(a+, a−)
s ′

+(z + ia−)

s+(z + ia−)
+ γ01 (3.20)

e−
01 = 2irB(a+, a−) (3.21)

e+
01 = A(a+, a−) (3.22)

with A(a+, a−) and B(a+, a−) given by (3.5) and (3.4), resp. In particular, this entails that
Eδ(y) depends on all of the parameters r, a+, a− and b, in contrast to the hyperbolic case. The
constant γ01 cannot be fixed unless we impose further restrictions on c01(z). In this connection
we recall the ambiguity pointed out in the paragraph containing (2.10). Now at the elliptic
level there is no natural generalization of the asymptotics requirement (2.11). Thus we should
try and fix the dependence on y in some other way.

We will return to the y-dependence shortly, but we allow the ambiguity for the time being.
Clearly, we can repeat our reasoning for the equations

c10(z − ia−) − c10(z) = e+
10 (3.23)

c10(z − ia+) − c10(z) = −C−(z) + e−
10 (3.24)

so that we obtain

c10(z) = B(a−, a+)
s ′
−(z + ia+)

s−(z + ia+)
+ γ10 (3.25)

e+
10 = 2irB(a−, a+) (3.26)

e−
10 = A(a−, a+). (3.27)

Consider next c11. We should solve the A�Es

c11(z − ia+) − c11(z) = −C−(z)c01(z + ia+) + e−
11 + e−

10c01(z) + e−
01c10(z) (3.28)

c11(z − ia−) − c11(z) = −C+(z)c10(z + ia−) + e+
11 + e+

10c01(z) + e+
01c10(z) (3.29)
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for a π/r-periodic function c11(z). By the same reasoning as before, when such a solution
c11(z) exists, then it is unique up to a constant, while e−

11 and e+
11 are uniquely determined.

Using (3.15) and (3.24) to get rid of C±(z), one easily verifies that the desired solution reads

c11(z) = [c10(z) − 2e+
10][c01(z) − 2e−

01] + γ11 (3.30)

yielding

e−
11 = −e−

01(e
−
10 + 2e+

10) (3.31)

e+
11 = −e+

10(e
+
01 + 2e−

01). (3.32)

Before discussing the general situation, we obtain a few more quantities explicitly, namely
c02, e

δ
02, c20, e

δ
20, δ = +,−. The first one should be a π/r-periodic function satisfying the

A�Es

c02(z − ia+) − c02(z) = e−
02 + e−

01c01(z) (3.33)

c02(z − ia−) − c02(z) = [c01(z − ia−) − c01(z) − e+
01]c01(z + ia−) + e+

02 + e+
01c01(z). (3.34)

As before, any function with these features is unique up to a constant.
We claim such a function exists and is given by

c02(z) = B(a+, a−)2

2

s ′′
+(z + ia−)

s+(z + ia−)
+ ζ1c01(z) + ζ2c01(z + ia−) + γ02 (3.35)

ζ1 ≡ c01(ia−) ζ2 ≡ e+
01 − c01(0) + c01(ia−). (3.36)

Indeed, the rhs is clearly π/r-periodic. To verify the A�E (3.33), one needs the identity

s ′′
+(z − ia+)

s+(z − ia+)
− s ′′

+(z)

s+(z)
= 4ir

s ′
+(z)

s+(z)
− 4r2 (3.37)

which follows by differentiating (3.2). To check (3.34), one can proceed as follows. First,
although the difference �(z) between the lhs and rhs consists of terms that are not ia+-periodic,
�(z) is in fact ia+-periodic. (This can be verified by using (3.2) and (3.37).) Therefore �(z)

is elliptic. Requiring now that the residues at the simple poles z = 0 and z = −2ia− cancel,
one obtains (3.36). Then the residues at z = −ia− cancel, too, so �(z) is z-independent.

Choosing z = −ib in �(z) so as to exploit C+(−ib) = 0 (cf (1.27)), one now obtains

e+
02 = B(a+, a−)2

2

(
s ′′

+(ib)

s+(ib)
− s ′′

+(ib − ia−)

s+(ib − ia−)

)
+ e+

01[c01(ia−) − c01(−ib + ia−)]

+[c01(ia−) − c01(0)][c01(−ib) − c01(−ib + ia−)]. (3.38)

Likewise, from (3.33) one gets

e−
02 = B(a+, a−)2

(
2ir

s ′
+(2ia−)

s+(2ia−)
− 2r2

)
+ e−

01[c01(ia−) − c01(0) + e+
01]. (3.39)

Clearly, we can now determine c20(z) and eδ
20, δ = +,−, by switching indices and a+, a−.

Therefore, all quantities cmn(z), e
δ
mn with m + n � 2 have now been obtained in explicit form.

3.2. An appraisal of the general case

We proceed with a study of the general situation. Obviously, we can analyse the
system (3.12), (3.13) with boundary conditions (2.8) recursively, the conclusion being that
when a solution satisfying (3.19) exists, then it is unique up to the ambiguity (2.10), whereas
the formal power series (3.11) have uniquely determined coefficients. Now in the hyperbolic
case we could exploit our previous results from [2] to prove that for b = (N+ + 1)a+ − N−a−
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the system (2.6)–(2.8) does admit a solution. Although the results in [1] suggest that this is
still true for the pertinent elliptic system, we have no complete proof.

In order to explain in more detail what is involved here, it is expedient to consider first two
cases for which existence of a solution does follow from [1]. Specifically, these are the cases
b = (N+ + 1)a+ and b = (N− + 1)a−, with Nδ ∈ N. (These special cases were also studied
in [8, 9].) By a+ ↔ a− symmetry, we need only discuss the first case.

First, we recall from section 2 in [1] that the function

F+(z, y) ≡ c(z)−1�(z, y) = eizy
N+∏
j=1

s−(z + zj (y))

s−(z + ija+)
y ∈ (K,∞) (3.40)

is an Aδ-eigenfunction with eigenvalues Eδ(y), δ = +,−. (We are choosing the function f (y)

in (1.24) equal to 1, since we have no other natural ‘dual choice’ available.) The point is
now that the solutions to the constraint system detailed in [1] admit a convergent power series
expansion

zj (y) =
∞∑
k=0

ηj,k exp(−2ka+y) ηj,0 ≡ ija+ j = 1, . . . , N+ (3.41)

for y large enough.
Indeed, from the paragraph in [1] containing equation (2.15) we deduce that the parameters

y and t are related by exp(−2a+y) = f (t), where f (t) is holomorphic at t = 0 and satisfies
f (0) = 0, f ′(0) �= 0. Therefore, there exists a function H(z) that is holomorphic at z = 0
and satisfies H(0) = 0, H ′(0) �= 0, such that t = H(exp(−2a+y)). Hence we obtain (3.41).

Using also equations (2.16) and (2.27) in [1] we now deduce that there exist convergent
expansions

exp(−izy)F+(z, y) =
∞∑
k=0

ck0(z) exp(−2ka+y) c00 = 1 (3.42)

exp(−a+y)E−(y) =
∞∑
k=0

e−
k0 exp(−2ka+y) e−

00 = 1 (3.43)

exp(−a−y)E+(y) =
∞∑
k=0

[e+
k0 + e+

k1 exp(−2a−y)] exp(−2ka+y) e+
00 = 1 (3.44)

for y large enough. In particular, this entails

ckl(z) = 0 e−
kl = 0 e+

k,l+1 = 0 k ∈ N l ∈ N∗ (b = (N+ + 1)a+) (3.45)

in accordance with the special cases calculated in section 3.1.
Next, we study the dense set of b-values (N+ + 1)a+ − N−a−, N+, N− ∈ N∗. In contrast

to the hyperbolic case, we are not aware of a complete proof that the system (3.12), (3.13)
with boundary conditions (2.8) and periodicity requirement (3.19) admits a solution for all of
these b-values. To explain the problem that arises, we first recall some results from [1]. From
equations (1.21)–(1.25) in [1], we deduce that the function

F+(z, y) ≡ c(z)−1�(z, y) = eizy
∏

δ=+,−

Nδ∏
j=1

s−δ(z + zδ
j (y))

s−δ(z + ijaδ)
y ∈ (K,∞) (3.46)

is an Aδ-eigenfunction with eigenvalues Eδ(y), δ = +,−. (Thus we have once again f (y) = 1
in (1.24).) The question is now whether the solutions zδ

j (y) to the constraint system detailed
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in section 3 of [1] admit a convergent power series expansion

zδ
j (y) =

∞∑
k,l=0

ηδ
j,kl exp(−2(ka+ + la−)y) ηδ

j,00 ≡ ijaδ j = 1, . . . , Nδ δ = +,−

(3.47)

for y large enough. If so, this would follow for exp(−izy)F+(z, y) and exp(−a−δy)Eδ(y), as
well.

Elaborating on the latter question, we observe that the parameters u and tδ introduced
in [1] are related via exp(−2aδu) = fδ(tδ), where fδ(z) is holomorphic at z = 0 and satisfies
fδ(0) = 0, f ′

δ (0) �= 0. (This follows from equation (3.16) in [1] by writing the lhs asu, and then
exponentiating.) Therefore, there exist two functions H±(z) that are holomorphic at z = 0 and
satisfyH±(0) = 0, H ′

±(0) �= 0, such that t± = H±(exp(−2a±u)). From [1] equation (3.17) we
now deduce that we have y = u+H(exp(−2a+u), exp(−2a−u)), with H(z1, z2) holomorphic
at z1 = z2 = 0. But we do not know whether an ‘inverse’ function I (z1, z2) exists, holomorphic
at z1 = z2 = 0 and such that u = y + I (exp(−2a+y), exp(−2a−y)). If so, we would have

exp(−2aδu) = exp(−2aδy)

∞∑
k,l=0

τ δ
kl exp(−2(ka+ + la−)y) (?) (3.48)

with the power series convergent for y large enough. Thus it would follow that zδ
j (y), hence

exp(−a−δy)Eδ(y) and exp(−izy)F+(z, y) as well, admit convergent power series expansions
in exp(−2a+y) and exp(−2a−y) for y large enough.

Even when the above question admits an affirmative answer (as we expect), it appears
an intractable task to actually calculate the coefficients explicitly by taking F+(z, y) (3.46)
as a starting point. In the hyperbolic case we could invoke the second, far more explicit
representation (2.36) of the joint eigenfunction, which enabled us to bypass the highly
transcendental dependence of the zero functions zδ

j (y) on y. But we are not aware
of any alternative representations in the elliptic case, so that a further analysis of the
system (3.12), (3.13) with boundary conditions (2.8) and periodicity requirement (3.19) appears
more promising.

Even though we are unable to prove that the latter system admits solutions for all of the
b-values (N+ + 1)a+ −N−a−, we should repeat that we have shown above that no obstructions
occur for the cases m + n � 2. Moreover, all of the pertinent quantities in section 3.1 are
real-analytic in b for real b. This strongly suggests that formal interpolating solutions with
essentially the same features as in the hyperbolic case do exist.
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[2] Ruijsenaars S N M 1999 Generalized Lamé functions. II. Hyperbolic and trigonometric specializations J. Math.

Phys. 40 1627–63
[3] Ruijsenaars S N M 2000 Special functions defined by analytic difference equations Proc. Tempe NATO Advanced

Study Institute ‘Special Functions 2000’ ed J Bustoz, M Ismail, S K Suslov, at press
[4] Ruijsenaars S N M 1997 First-order analytic difference equations and integrable quantum systems J. Math. Phys.

38 1069–146
[5] van Diejen J F and Kirillov A N 2000 Formulae for q-spherical functions using inverse scattering theory of

reflectionless Jacobi operators Commun. Math. Phys. 210 335–69
[6] Gasper G and Rahman M 1990 Basic hypergeometric series Encyclopedia of Mathematics and its Applications

vol 35 (Cambridge: Cambridge University Press)
[7] Ruijsenaars S N M 2000 Special functions associated with Calogero–Moser type quantum systems Proc. 1999
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